Note
Access to this page requires authorization. You can try signing in or changing directories.
Access to this page requires authorization. You can try changing directories.
The workspace functionally remains unchanged with the V2 development platform. However, there are network-related changes to be aware of. For details, see Network Isolation Change with Our New API Platform on Azure Resource Manager
This article gives a comparison of scenario(s) in SDK v1 and SDK v2.
Create a workspace
SDK v1
from azureml.core import Workspace ws = Workspace.create( name='my_workspace', location='chinaeast2', subscription_id = '<SUBSCRIPTION_ID>' resource_group = '<RESOURCE_GROUP>' )
SDK v2
from azure.ai.ml import MLClient from azure.ai.ml.entities import Workspace from azure.identity import DefaultAzureCredential # specify the details of your subscription subscription_id = "<SUBSCRIPTION_ID>" resource_group = "<RESOURCE_GROUP>" # get a handle to the subscription ml_client = MLClient(DefaultAzureCredential(), subscription_id, resource_group) # specify the workspace details ws = Workspace( name="my_workspace", location="chinaeast2", display_name="My workspace", description="This example shows how to create a workspace", tags=dict(purpose="demo"), ) ml_client.workspaces.begin_create(ws)
Create a workspace for use with Azure Private Link endpoints
SDK v1
from azureml.core import Workspace ws = Workspace.create( name='my_workspace', location='chinaeast2', subscription_id = '<SUBSCRIPTION_ID>' resource_group = '<RESOURCE_GROUP>' ) ple = PrivateEndPointConfig( name='my_private_link_endpoint', vnet_name='<VNET_NAME>', vnet_subnet_name='<VNET_SUBNET_NAME>', vnet_subscription_id='<SUBSCRIPTION_ID>', vnet_resource_group='<RESOURCE_GROUP>' ) ws.add_private_endpoint(ple, private_endpoint_auto_approval=True)
SDK v2
from azure.ai.ml import MLClient from azure.ai.ml.entities import Workspace from azure.identity import DefaultAzureCredential # specify the details of your subscription subscription_id = "<SUBSCRIPTION_ID>" resource_group = "<RESOURCE_GROUP>" # get a handle to the subscription ml_client = MLClient(DefaultAzureCredential(), subscription_id, resource_group) ws = Workspace( name="private_link_endpoint_workspace, location="chinaeast2", display_name="Private Link endpoint workspace", description="When using private link, you must set the image_build_compute property to a cluster name to use for Docker image environment building. You can also specify whether the workspace should be accessible over the internet.", image_build_compute="cpu-compute", public_network_access="Disabled", tags=dict(purpose="demonstration"), ) ml_client.workspaces.begin_create(ws)
Load/connect to workspace using parameters
SDK v1
from azureml.core import Workspace ws = Workspace.from_config() # specify the details of your subscription subscription_id = "<SUBSCRIPTION_ID>" resource_group = "<RESOURCE_GROUP>" # get handle on the workspace ws = Workspace.get( subscription_id='<SUBSCRIPTION_ID>', resource_group='<RESOURCE_GROUP>', name='my_workspace', )
SDK v2
from azure.ai.ml import MLClient from azure.ai.ml.entities import Workspace from azure.identity import DefaultAzureCredential # specify the details of your subscription subscription_id = "<SUBSCRIPTION_ID>" resource_group = "<RESOURCE_GROUP>" # get handle on the workspace ws = MLClient( DefaultAzureCredential(), subscription_id='<SUBSCRIPTION_ID>', resource_group_name='<RESOURCE_GROUP>', workspace_name='my_workspace' )
Load/connect to workspace using config file
SDK v1
from azureml.core import Workspace ws = Workspace.from_config() ws.get_details()
SDK v2
from azure.ai.ml import MLClient from azure.ai.ml.entities import Workspace from azure.identity import DefaultAzureCredential ws = MLClient.from_config( DefaultAzureCredential() )
Mapping of key functionality in SDK v1 and SDK v2
Functionality in SDK v1 | Rough mapping in SDK v2 |
---|---|
Method/API in SDK v1 (use links to ref docs) | Method/API in SDK v2 (use links to ref docs) |
Related documents
For more information, see: