Copy and transform data in Azure SQL Managed Instance using Azure Data Factory or Synapse Analytics

APPLIES TO: Azure Data Factory Azure Synapse Analytics

This article outlines how to use Copy Activity to copy data from and to Azure SQL Managed Instance, and use Data Flow to transform data in Azure SQL Managed Instance. To learn more, read the introductory articles for Azure Data Factory and Synapse Analytics.

Supported capabilities

This Azure SQL Managed Instance connector is supported for the following capabilities:

Supported capabilities IR Managed private endpoint
Copy activity (source/sink) ① ② ✓ Public preview
Mapping data flow (source/sink) ✓ Public preview
Lookup activity ① ② ✓ Public preview
GetMetadata activity ① ② ✓ Public preview
Script activity ① ② ✓ Public preview
Stored procedure activity ① ② ✓ Public preview

① Azure integration runtime ② Self-hosted integration runtime

For Copy activity, this Azure SQL Database connector supports these functions:

  • Copying data by using SQL authentication and Microsoft Entra Application token authentication with a service principal or managed identities for Azure resources.
  • As a source, retrieving data by using a SQL query or a stored procedure. You can also choose to parallel copy from SQL MI source, see the Parallel copy from SQL MI section for details.
  • As a sink, automatically creating destination table if not exists based on the source schema; appending data to a table or invoking a stored procedure with custom logic during copy.

Prerequisites

To access the SQL Managed Instance public endpoint, you can use a managed Azure integration runtime. Make sure that you enable the public endpoint and also allow public endpoint traffic on the network security group so that the service can connect to your database. For more information, see this guidance.

To access the SQL Managed Instance private endpoint, set up a self-hosted integration runtime that can access the database. If you provision the self-hosted integration runtime in the same virtual network as your managed instance, make sure that your integration runtime machine is in a different subnet than your managed instance. If you provision your self-hosted integration runtime in a different virtual network than your managed instance, you can use either a virtual network peering or a virtual network to virtual network connection. For more information, see Connect your application to SQL Managed Instance.

Get started

To perform the Copy activity with a pipeline, you can use one of the following tools or SDKs:

Create a linked service to an Azure SQL Managed instance using UI

Use the following steps to create a linked service to an SQL Managed instance in the Azure portal UI.

  1. Browse to the Manage tab in your Azure Data Factory or Synapse workspace and select Linked Services, then click New:

  2. Search for SQL and select the Azure SQL Server Managed Instance connector.

    Screenshot of the Azure SQL Server Managed Instance connector.

  3. Configure the service details, test the connection, and create the new linked service.

    Screenshot of linked service configuration for a SQL Managed instance.

Connector configuration details

The following sections provide details about properties that are used to define Azure Data Factory entities specific to the SQL Managed Instance connector.

Linked service properties

The Azure SQL Managed Instance connector Recommended version supports TLS 1.3. Refer to this section to upgrade your Azure SQL Managed Instance connector version from Legacy one. For the property details, see the corresponding sections.

These generic properties are supported for an Azure SQL Managed Instance linked service when you apply Recommended version:

Property Description Required
type The type property must be set to AzureSqlMI. Yes
server The name or network address of the SQL server instance you want to connect to. Yes
database The name of the database. Yes
authenticationType The type used for authentication. Allowed values are SQL (default), ServicePrincipal, SystemAssignedManagedIdentity, UserAssignedManagedIdentity. Go to the relevant authentication section on specific properties and prerequisites. Yes
alwaysEncryptedSettings Specify alwaysencryptedsettings information that's needed to enable Always Encrypted to protect sensitive data stored in SQL server by using either managed identity or service principal. For more information, see the JSON example following the table and Using Always Encrypted section. If not specified, the default always encrypted setting is disabled. No
encrypt Indicate whether TLS encryption is required for all data sent between the client and server. Options: mandatory (for true, default)/optional (for false)/strict. No
trustServerCertificate Indicate whether the channel will be encrypted while bypassing the certificate chain to validate trust. No
hostNameInCertificate The host name to use when validating the server certificate for the connection. When not specified, the server name is used for certificate validation. No
connectVia This integration runtime is used to connect to the data store. You can use a self-hosted integration runtime or an Azure integration runtime if your managed instance has a public endpoint and allows the service to access it. If not specified, the default Azure integration runtime is used. Yes

For additional connection properties, see the table below:

Property Description Required
applicationIntent The application workload type when connecting to a server. Allowed values are ReadOnly and ReadWrite. No
connectTimeout The length of time (in seconds) to wait for a connection to the server before terminating the attempt and generating an error. No
connectRetryCount The number of reconnections attempted after identifying an idle connection failure. The value should be an integer between 0 and 255. No
connectRetryInterval The amount of time (in seconds) between each reconnection attempt after identifying an idle connection failure. The value should be an integer between 1 and 60. No
loadBalanceTimeout The minimum time (in seconds) for the connection to live in the connection pool before the connection being destroyed. No
commandTimeout The default wait time (in seconds) before terminating the attempt to execute a command and generating an error. No
integratedSecurity The allowed values are true or false. When specifying false, indicate whether userName and password are specified in the connection. When specifying true, indicates whether the current Windows account credentials are used for authentication. No
failoverPartner The name or address of the partner server to connect to if the primary server is down. No
maxPoolSize The maximum number of connections allowed in the connection pool for the specific connection. No
minPoolSize The minimum number of connections allowed in the connection pool for the specific connection. No
multipleActiveResultSets The allowed values are true or false. When you specify true, an application can maintain multiple active result sets (MARS). When you specify false, an application must process or cancel all result sets from one batch before it can execute any other batches on that connection. No
multiSubnetFailover The allowed values are true or false. If your application is connecting to an AlwaysOn availability group (AG) on different subnets, setting this property to true provides faster detection of and connection to the currently active server. No
packetSize The size in bytes of the network packets used to communicate with an instance of server. No
pooling The allowed values are true or false. When you specify true, the connection will be pooled. When you specify false, the connection will be explicitly opened every time the connection is requested. No

SQL authentication

To use SQL authentication, in addition to the generic properties that are described in the preceding section, specify the following properties:

Property Description Required
userName The user name used to connect to the server. Yes
password The password for the user name. Mark this field as SecureString to store it securely. Or, you can reference a secret stored in Azure Key Vault. Yes

Example 1: use SQL authentication

{
    "name": "AzureSqlMILinkedService",
    "properties": {
        "type": "AzureSqlMI",
        "typeProperties": {
            "server": "<name or network address of the SQL server instance>",
            "database": "<database name>",
            "encrypt": "<encrypt>",
            "trustServerCertificate": false,
            "authenticationType": "SQL",
            "userName": "<user name>",
            "password": {
                "type": "SecureString",
                "value": "<password>"
            }
        },
        "connectVia": {
            "referenceName": "<name of Integration Runtime>",
            "type": "IntegrationRuntimeReference"
        }
    }
}

Example 2: use SQL authentication with a password in Azure Key Vault

{
    "name": "AzureSqlMILinkedService",
    "properties": {
        "type": "AzureSqlMI",
        "typeProperties": {
            "server": "<name or network address of the SQL server instance>",
            "database": "<database name>",
            "encrypt": "<encrypt>",
            "trustServerCertificate": false,
            "authenticationType": "SQL",
            "userName": "<user name>",
            "password": { 
                "type": "AzureKeyVaultSecret", 
                "store": { 
                    "referenceName": "<Azure Key Vault linked service name>", 
                    "type": "LinkedServiceReference" 
                }, 
                "secretName": "<secretName>" 
            }
        },
        "connectVia": {
            "referenceName": "<name of Integration Runtime>",
            "type": "IntegrationRuntimeReference"
        }
    }
}

Example 3: use SQL authentication with Always Encrypted

{
    "name": "AzureSqlMILinkedService",
    "properties": {
        "type": "AzureSqlMI",
        "typeProperties": {
            "server": "<name or network address of the SQL server instance>",
            "database": "<database name>",
            "encrypt": "<encrypt>",
            "trustServerCertificate": false,
            "authenticationType": "SQL",
            "userName": "<user name>",
            "password": {
                "type": "SecureString",
                "value": "<password>"
            }
        },
        "alwaysEncryptedSettings": {
            "alwaysEncryptedAkvAuthType": "ServicePrincipal",
            "servicePrincipalId": "<service principal id>",
            "servicePrincipalKey": {
                "type": "SecureString",
                "value": "<service principal key>"
            }
        },
        "connectVia": {
            "referenceName": "<name of Integration Runtime>",
            "type": "IntegrationRuntimeReference"
        }
    }
}

Service principal authentication

To use service principal authentication, in addition to the generic properties that are described in the preceding section, specify the following properties

Property Description Required
servicePrincipalId Specify the application's client ID. Yes
servicePrincipalCredential The service principal credential. Specify the application's key. Mark this field as SecureString to store it securely, or reference a secret stored in Azure Key Vault. Yes
tenant Specify the tenant information, like the domain name or tenant ID, under which your application resides. Retrieve it by hovering the mouse in the upper-right corner of the Azure portal. Yes
azureCloudType For service principal authentication, specify the type of Azure cloud environment to which your Microsoft Entra application is registered.
By default, the service's cloud environment is used.
No

You also need to follow the steps below:

  1. Follow the steps to Provision a Microsoft Entra administrator for your Managed Instance.

  2. Create a Microsoft Entra application from the Azure portal. Make note of the application name and the following values that define the linked service:

    • Application ID
    • Application key
    • Tenant ID
  3. Create logins for the service principal. In SQL Server Management Studio (SSMS), connect to your managed instance using a SQL Server account that is a sysadmin. In master database, run the following T-SQL:

    CREATE LOGIN [your application name] FROM EXTERNAL PROVIDER
    
  4. Create contained database users for the service principal. Connect to the database from or to which you want to copy data, run the following T-SQL:

    CREATE USER [your application name] FROM EXTERNAL PROVIDER
    
  5. Grant the service principal needed permissions as you normally do for SQL users and others. Run the following code. For more options, see this document.

    ALTER ROLE [role name e.g. db_owner] ADD MEMBER [your application name]
    
  6. Configure a SQL Managed Instance linked service.

Example: use service principal authentication

{
    "name": "AzureSqlDbLinkedService",
    "properties": {
        "type": "AzureSqlMI",
        "typeProperties": {
            "server": "<name or network address of the SQL server instance>",
            "database": "<database name>",
            "encrypt": "<encrypt>",
            "trustServerCertificate": false,
            "hostNameInCertificate": "<host name>",
            "authenticationType": "ServicePrincipal",
            "servicePrincipalId": "<service principal id>",
            "servicePrincipalCredential": {
                "type": "SecureString",
                "value": "<application key>"
            },
            "tenant": "<tenant info, e.g. microsoft.partner.onmschina.cn>"
        },
        "connectVia": {
            "referenceName": "<name of Integration Runtime>",
            "type": "IntegrationRuntimeReference"
        }
    }
}

System-assigned managed identity authentication

A data factory or Synapse workspace can be associated with a system-assigned managed identity for Azure resources that represents the service for authentication to other Azure services. You can use this managed identity for SQL Managed Instance authentication. The designated service can access and copy data from or to your database by using this identity.

To use system-assigned managed identity authentication, specify the generic properties that are described in the preceding section, and follow these steps.

  1. Follow the steps to Provision a Microsoft Entra administrator for your Managed Instance.

  2. Create logins for the system-assigned managed identity. In SQL Server Management Studio (SSMS), connect to your managed instance using a SQL Server account that is a sysadmin. In master database, run the following T-SQL:

    CREATE LOGIN [your_factory_or_workspace_ name] FROM EXTERNAL PROVIDER
    
  3. Create contained database users for the system-assigned managed identity. Connect to the database from or to which you want to copy data, run the following T-SQL:

    CREATE USER [your_factory_or_workspace_name] FROM EXTERNAL PROVIDER
    
  4. Grant the system-assigned managed identity needed permissions as you normally do for SQL users and others. Run the following code. For more options, see this document.

    ALTER ROLE [role name e.g. db_owner] ADD MEMBER [your_factory_or_workspace_name]
    
  5. Configure a SQL Managed Instance linked service.

Example: uses system-assigned managed identity authentication

{
    "name": "AzureSqlDbLinkedService",
    "properties": {
        "type": "AzureSqlMI",
        "typeProperties": {
            "server": "<name or network address of the SQL server instance>",
            "database": "<database name>",
            "encrypt": "<encrypt>",
            "trustServerCertificate": false,
            "authenticationType": "SystemAssignedManagedIdentity"
        },
        "connectVia": {
            "referenceName": "<name of Integration Runtime>",
            "type": "IntegrationRuntimeReference"
        }
    }
}

User-assigned managed identity authentication

A data factory or Synapse workspace can be associated with a user-assigned managed identities that represents the service for authentication to other Azure services. You can use this managed identity for SQL Managed Instance authentication. The designated service can access and copy data from or to your database by using this identity.

To use user-assigned managed identity authentication, in addition to the generic properties that are described in the preceding section, specify the following properties:

Property Description Required
credentials Specify the user-assigned managed identity as the credential object. Yes

You also need to follow the steps below:

  1. Follow the steps to Provision a Microsoft Entra administrator for your Managed Instance.

  2. Create logins for the user-assigned managed identity. In SQL Server Management Studio (SSMS), connect to your managed instance using a SQL Server account that is a sysadmin. In master database, run the following T-SQL:

    CREATE LOGIN [your_factory_or_workspace_ name] FROM EXTERNAL PROVIDER
    
  3. Create contained database users for the user-assigned managed identity. Connect to the database from or to which you want to copy data, run the following T-SQL:

    CREATE USER [your_factory_or_workspace_name] FROM EXTERNAL PROVIDER
    
  4. Create one or multiple user-assigned managed identities and grant the user-assigned managed identity needed permissions as you normally do for SQL users and others. Run the following code. For more options, see this document.

    ALTER ROLE [role name e.g. db_owner] ADD MEMBER [your_factory_or_workspace_name]
    
  5. Assign one or multiple user-assigned managed identities to your data factory and create credentials for each user-assigned managed identity.

  6. Configure a SQL Managed Instance linked service.

Example: uses user-assigned managed identity authentication

{
    "name": "AzureSqlDbLinkedService",
    "properties": {
        "type": "AzureSqlMI",
        "typeProperties": {
            "server": "<name or network address of the SQL server instance>",
            "database": "<database name>",
            "encrypt": "<encrypt>",
            "trustServerCertificate": false,
            "authenticationType": "UserAssignedManagedIdentity",
            "credential": {
                "referenceName": "credential1",
                "type": "CredentialReference"
            }
        },
        "connectVia": {
            "referenceName": "<name of Integration Runtime>",
            "type": "IntegrationRuntimeReference"
        }
    }
}

Legacy version

These generic properties are supported for an Azure SQL Managed Instance linked service when you apply Legacy version:

Property Description Required
type The type property must be set to AzureSqlMI. Yes
connectionString This property specifies the connectionString information that's needed to connect to SQL Managed Instance by using SQL authentication. For more information, see the following examples.
The default port is 1433. If you're using SQL Managed Instance with a public endpoint, explicitly specify port 3342.
You also can put a password in Azure Key Vault. If it's SQL authentication, pull the password configuration out of the connection string. For more information, see Store credentials in Azure Key Vault.
Yes
alwaysEncryptedSettings Specify alwaysencryptedsettings information that's needed to enable Always Encrypted to protect sensitive data stored in SQL server by using either managed identity or service principal. For more information, see Using Always Encrypted section. If not specified, the default always encrypted setting is disabled. No
connectVia This integration runtime is used to connect to the data store. You can use a self-hosted integration runtime or an Azure integration runtime if your managed instance has a public endpoint and allows the service to access it. If not specified, the default Azure integration runtime is used. Yes

For different authentication types, refer to the following sections on specific properties and prerequisites respectively:

SQL authentication for the legacy version

To use SQL authentication, specify the generic properties that are described in the preceding section.

Service principal authentication for the legacy version

To use service principal authentication, in addition to the generic properties that are described in the preceding section, specify the following properties:

Property Description Required
servicePrincipalId Specify the application's client ID. Yes
servicePrincipalKey Specify the application's key. Mark this field as SecureString to store it securely or reference a secret stored in Azure Key Vault. Yes
tenant Specify the tenant information, like the domain name or tenant ID, under which your application resides. Retrieve it by hovering the mouse in the upper-right corner of the Azure portal. Yes
azureCloudType For service principal authentication, specify the type of Azure cloud environment to which your Microsoft Entra application is registered.
Allowed values are AzurePublic, AzureChina, AzureUsGovernment, and AzureGermany. By default, the data factory or Synapse pipeline's cloud environment is used.
No

You also need to follow the steps in Service principal authentication to grant the corresponding permission.

System-assigned managed identity authentication for the legacy version

To use system-assigned managed identity authentication, follow the same step for the recommended version in System-assigned managed identity authentication.

User-assigned managed identity authentication for legacy version

To use user-assigned managed identity authentication, follow the same step for the recommended version in User-assigned managed identity authentication.

Dataset properties

For a full list of sections and properties available for use to define datasets, see the datasets article. This section provides a list of properties supported by the SQL Managed Instance dataset.

To copy data to and from SQL Managed Instance, the following properties are supported:

Property Description Required
type The type property of the dataset must be set to AzureSqlMITable. Yes
schema Name of the schema. No for source, Yes for sink
table Name of the table/view. No for source, Yes for sink
tableName Name of the table/view with schema. This property is supported for backward compatibility. For new workload, use schema and table. No for source, Yes for sink

Example

{
    "name": "AzureSqlMIDataset",
    "properties":
    {
        "type": "AzureSqlMITable",
        "linkedServiceName": {
            "referenceName": "<SQL Managed Instance linked service name>",
            "type": "LinkedServiceReference"
        },
        "schema": [ < physical schema, optional, retrievable during authoring > ],
        "typeProperties": {
            "schema": "<schema_name>",
            "table": "<table_name>"
        }
    }
}

Copy activity properties

For a full list of sections and properties available for use to define activities, see the Pipelines article. This section provides a list of properties supported by the SQL Managed Instance source and sink.

SQL Managed Instance as a source

Tip

To load data from SQL MI efficiently by using data partitioning, learn more from Parallel copy from SQL MI.

To copy data from SQL Managed Instance, the following properties are supported in the copy activity source section:

Property Description Required
type The type property of the copy activity source must be set to SqlMISource. Yes
sqlReaderQuery This property uses the custom SQL query to read data. An example is select * from MyTable. No
sqlReaderStoredProcedureName This property is the name of the stored procedure that reads data from the source table. The last SQL statement must be a SELECT statement in the stored procedure. No
storedProcedureParameters These parameters are for the stored procedure.
Allowed values are name or value pairs. The names and casing of the parameters must match the names and casing of the stored procedure parameters.
No
isolationLevel Specifies the transaction locking behavior for the SQL source. The allowed values are: ReadCommitted, ReadUncommitted, RepeatableRead, Serializable, Snapshot. If not specified, the database's default isolation level is used. Refer to this doc for more details. No
partitionOptions Specifies the data partitioning options used to load data from SQL MI.
Allowed values are: None (default), PhysicalPartitionsOfTable, and DynamicRange.
When a partition option is enabled (that is, not None), the degree of parallelism to concurrently load data from SQL MI is controlled by the parallelCopies setting on the copy activity.
No
partitionSettings Specify the group of the settings for data partitioning.
Apply when the partition option isn't None.
No
Under partitionSettings:
partitionColumnName Specify the name of the source column in integer or date/datetime type (int, smallint, bigint, date, smalldatetime, datetime, datetime2, or datetimeoffset) that will be used by range partitioning for parallel copy. If not specified, the index or the primary key of the table is auto-detected and used as the partition column.
Apply when the partition option is DynamicRange. If you use a query to retrieve the source data, hook ?DfDynamicRangePartitionCondition in the WHERE clause. For an example, see the Parallel copy from SQL database section.
No
partitionUpperBound The maximum value of the partition column for partition range splitting. This value is used to decide the partition stride, not for filtering the rows in table. All rows in the table or query result will be partitioned and copied. If not specified, copy activity auto detect the value.
Apply when the partition option is DynamicRange. For an example, see the Parallel copy from SQL database section.
No
partitionLowerBound The minimum value of the partition column for partition range splitting. This value is used to decide the partition stride, not for filtering the rows in table. All rows in the table or query result will be partitioned and copied. If not specified, copy activity auto detect the value.
Apply when the partition option is DynamicRange. For an example, see the Parallel copy from SQL database section.
No

Note the following points:

  • If sqlReaderQuery is specified for SqlMISource, the copy activity runs this query against the SQL Managed Instance source to get the data. You also can specify a stored procedure by specifying sqlReaderStoredProcedureName and storedProcedureParameters if the stored procedure takes parameters.
  • When using stored procedure in source to retrieve data, note if your stored procedure is designed as returning different schema when different parameter value is passed in, you may encounter failure or see unexpected result when importing schema from UI or when copying data to SQL database with auto table creation.

Example: Use a SQL query

"activities":[
    {
        "name": "CopyFromAzureSqlMI",
        "type": "Copy",
        "inputs": [
            {
                "referenceName": "<SQL Managed Instance input dataset name>",
                "type": "DatasetReference"
            }
        ],
        "outputs": [
            {
                "referenceName": "<output dataset name>",
                "type": "DatasetReference"
            }
        ],
        "typeProperties": {
            "source": {
                "type": "SqlMISource",
                "sqlReaderQuery": "SELECT * FROM MyTable"
            },
            "sink": {
                "type": "<sink type>"
            }
        }
    }
]

Example: Use a stored procedure

"activities":[
    {
        "name": "CopyFromAzureSqlMI",
        "type": "Copy",
        "inputs": [
            {
                "referenceName": "<SQL Managed Instance input dataset name>",
                "type": "DatasetReference"
            }
        ],
        "outputs": [
            {
                "referenceName": "<output dataset name>",
                "type": "DatasetReference"
            }
        ],
        "typeProperties": {
            "source": {
                "type": "SqlMISource",
                "sqlReaderStoredProcedureName": "CopyTestSrcStoredProcedureWithParameters",
                "storedProcedureParameters": {
                    "stringData": { "value": "str3" },
                    "identifier": { "value": "$$Text.Format('{0:yyyy}', <datetime parameter>)", "type": "Int"}
                }
            },
            "sink": {
                "type": "<sink type>"
            }
        }
    }
]

The stored procedure definition

CREATE PROCEDURE CopyTestSrcStoredProcedureWithParameters
(
    @stringData varchar(20),
    @identifier int
)
AS
SET NOCOUNT ON;
BEGIN
    select *
    from dbo.UnitTestSrcTable
    where dbo.UnitTestSrcTable.stringData != stringData
    and dbo.UnitTestSrcTable.identifier != identifier
END
GO

SQL Managed Instance as a sink

Tip

Learn more about the supported write behaviors, configurations, and best practices from Best practice for loading data into SQL Managed Instance.

To copy data to SQL Managed Instance, the following properties are supported in the copy activity sink section:

Property Description Required
type The type property of the copy activity sink must be set to SqlMISink. Yes
preCopyScript This property specifies a SQL query for the copy activity to run before writing data into SQL Managed Instance. It's invoked only once per copy run. You can use this property to clean up preloaded data. No
tableOption Specifies whether to automatically create the sink table if not exists based on the source schema. Auto table creation is not supported when sink specifies stored procedure. Allowed values are: none (default), autoCreate. No
sqlWriterStoredProcedureName The name of the stored procedure that defines how to apply source data into a target table.
This stored procedure is invoked per batch. For operations that run only once and have nothing to do with source data, for example, delete or truncate, use the preCopyScript property.
See example from Invoke a stored procedure from a SQL sink.
No
storedProcedureTableTypeParameterName The parameter name of the table type specified in the stored procedure. No
sqlWriterTableType The table type name to be used in the stored procedure. The copy activity makes the data being moved available in a temp table with this table type. Stored procedure code can then merge the data that's being copied with existing data. No
storedProcedureParameters Parameters for the stored procedure.
Allowed values are name and value pairs. Names and casing of parameters must match the names and casing of the stored procedure parameters.
No
writeBatchSize Number of rows to insert into the SQL table per batch.
Allowed values are integers for the number of rows. By default, the service dynamically determines the appropriate batch size based on the row size.
No
writeBatchTimeout The wait time for the insert, upsert and stored procedure operation to complete before it times out.
Allowed values are for the timespan. An example is "00:30:00" for 30 minutes. If no value is specified, the timeout defaults to "00:30:00".
No
 maxConcurrentConnections  The upper limit of concurrent connections established to the data store during the activity run. Specify a value only when you want to limit concurrent connections.  No 
WriteBehavior Specify the write behavior for copy activity to load data into Azure SQL MI.
The allowed value is Insert and Upsert. By default, the service uses insert to load data.
No
upsertSettings Specify the group of the settings for write behavior.
Apply when the WriteBehavior option is Upsert.
No
Under upsertSettings:
useTempDB Specify whether to use the global temporary table or physical table as the interim table for upsert.
By default, the service uses global temporary table as the interim table. value is true.
No
interimSchemaName Specify the interim schema for creating interim table if physical table is used. Note: user need to have the permission for creating and deleting table. By default, interim table will share the same schema as sink table.
Apply when the useTempDB option is False.
No
keys Specify the column names for unique row identification. Either a single key or a series of keys can be used. If not specified, the primary key is used. No

Example 1: Append data

"activities":[
    {
        "name": "CopyToAzureSqlMI",
        "type": "Copy",
        "inputs": [
            {
                "referenceName": "<input dataset name>",
                "type": "DatasetReference"
            }
        ],
        "outputs": [
            {
                "referenceName": "<SQL Managed Instance output dataset name>",
                "type": "DatasetReference"
            }
        ],
        "typeProperties": {
            "source": {
                "type": "<source type>"
            },
            "sink": {
                "type": "SqlMISink",
                "tableOption": "autoCreate",
                "writeBatchSize": 100000
            }
        }
    }
]

Example 2: Invoke a stored procedure during copy

Learn more details from Invoke a stored procedure from a SQL MI sink.

"activities":[
    {
        "name": "CopyToAzureSqlMI",
        "type": "Copy",
        "inputs": [
            {
                "referenceName": "<input dataset name>",
                "type": "DatasetReference"
            }
        ],
        "outputs": [
            {
                "referenceName": "<SQL Managed Instance output dataset name>",
                "type": "DatasetReference"
            }
        ],
        "typeProperties": {
            "source": {
                "type": "<source type>"
            },
            "sink": {
                "type": "SqlMISink",
                "sqlWriterStoredProcedureName": "CopyTestStoredProcedureWithParameters",
                "storedProcedureTableTypeParameterName": "MyTable",
                "sqlWriterTableType": "MyTableType",
                "storedProcedureParameters": {
                    "identifier": { "value": "1", "type": "Int" },
                    "stringData": { "value": "str1" }
                }
            }
        }
    }
]

Example 3: Upsert data

"activities":[
    {
        "name": "CopyToAzureSqlMI",
        "type": "Copy",
        "inputs": [
            {
                "referenceName": "<input dataset name>",
                "type": "DatasetReference"
            }
        ],
        "outputs": [
            {
                "referenceName": "<SQL Managed Instance output dataset name>",
                "type": "DatasetReference"
            }
        ],
        "typeProperties": {
            "source": {
                "type": "<source type>"
            },
            "sink": {
                "type": "SqlMISink",
                "tableOption": "autoCreate",
                "writeBehavior": "upsert",
                "upsertSettings": {
                    "useTempDB": true,
                    "keys": [
                        "<column name>"
                    ]
                },            
            }
        }
    }
]

Parallel copy from SQL MI

The Azure SQL Managed Instance connector in copy activity provides built-in data partitioning to copy data in parallel. You can find data partitioning options on the Source tab of the copy activity.

Screenshot of partition options

When you enable partitioned copy, copy activity runs parallel queries against your SQL MI source to load data by partitions. The parallel degree is controlled by the parallelCopies setting on the copy activity. For example, if you set parallelCopies to four, the service concurrently generates and runs four queries based on your specified partition option and settings, and each query retrieves a portion of data from your SQL MI.

You are suggested to enable parallel copy with data partitioning especially when you load large amount of data from your SQL MI. The following are suggested configurations for different scenarios. When copying data into file-based data store, it's recommended to write to a folder as multiple files (only specify folder name), in which case the performance is better than writing to a single file.

Scenario Suggested settings
Full load from large table, with physical partitions. Partition option: Physical partitions of table.

During execution, the service automatically detects the physical partitions, and copies data by partitions.

To check if your table has physical partition or not, you can refer to this query.
Full load from large table, without physical partitions, while with an integer or datetime column for data partitioning. Partition options: Dynamic range partition.
Partition column (optional): Specify the column used to partition data. If not specified, the index or primary key column is used.
Partition upper bound and partition lower bound (optional): Specify if you want to determine the partition stride. This is not for filtering the rows in table, all rows in the table will be partitioned and copied. If not specified, copy activity auto detect the values.

For example, if your partition column "ID" has values range from 1 to 100, and you set the lower bound as 20 and the upper bound as 80, with parallel copy as 4, the service retrieves data by 4 partitions - IDs in range <=20, [21, 50], [51, 80], and >=81, respectively.
Load a large amount of data by using a custom query, without physical partitions, while with an integer or date/datetime column for data partitioning. Partition options: Dynamic range partition.
Query: SELECT * FROM <TableName> WHERE ?DfDynamicRangePartitionCondition AND <your_additional_where_clause>.
Partition column: Specify the column used to partition data.
Partition upper bound and partition lower bound (optional): Specify if you want to determine the partition stride. This is not for filtering the rows in table, all rows in the query result will be partitioned and copied. If not specified, copy activity auto detect the value.

For example, if your partition column "ID" has values range from 1 to 100, and you set the lower bound as 20 and the upper bound as 80, with parallel copy as 4, the service retrieves data by 4 partitions- IDs in range <=20, [21, 50], [51, 80], and >=81, respectively.

Here are more sample queries for different scenarios:
1. Query the whole table:
SELECT * FROM <TableName> WHERE ?DfDynamicRangePartitionCondition
2. Query from a table with column selection and additional where-clause filters:
SELECT <column_list> FROM <TableName> WHERE ?DfDynamicRangePartitionCondition AND <your_additional_where_clause>
3. Query with subqueries:
SELECT <column_list> FROM (<your_sub_query>) AS T WHERE ?DfDynamicRangePartitionCondition AND <your_additional_where_clause>
4. Query with partition in subquery:
SELECT <column_list> FROM (SELECT <your_sub_query_column_list> FROM <TableName> WHERE ?DfDynamicRangePartitionCondition) AS T

Best practices to load data with partition option:

  1. Choose distinctive column as partition column (like primary key or unique key) to avoid data skew.
  2. If the table has built-in partition, use partition option "Physical partitions of table" to get better performance.
  3. If you use Azure Integration Runtime to copy data, you can set larger "Data Integration Units (DIU)" (>4) to utilize more computing resource. Check the applicable scenarios there.
  4. "Degree of copy parallelism" control the partition numbers, setting this number too large sometime hurts the performance, recommend setting this number as (DIU or number of Self-hosted IR nodes) * (2 to 4).

Example: full load from large table with physical partitions

"source": {
    "type": "SqlMISource",
    "partitionOption": "PhysicalPartitionsOfTable"
}

Example: query with dynamic range partition

"source": {
    "type": "SqlMISource",
    "query": "SELECT * FROM <TableName> WHERE ?DfDynamicRangePartitionCondition AND <your_additional_where_clause>",
    "partitionOption": "DynamicRange",
    "partitionSettings": {
        "partitionColumnName": "<partition_column_name>",
        "partitionUpperBound": "<upper_value_of_partition_column (optional) to decide the partition stride, not as data filter>",
        "partitionLowerBound": "<lower_value_of_partition_column (optional) to decide the partition stride, not as data filter>"
    }
}

Sample query to check physical partition

SELECT DISTINCT s.name AS SchemaName, t.name AS TableName, pf.name AS PartitionFunctionName, c.name AS ColumnName, iif(pf.name is null, 'no', 'yes') AS HasPartition
FROM sys.tables AS t
LEFT JOIN sys.objects AS o ON t.object_id = o.object_id
LEFT JOIN sys.schemas AS s ON o.schema_id = s.schema_id
LEFT JOIN sys.indexes AS i ON t.object_id = i.object_id 
LEFT JOIN sys.index_columns AS ic ON ic.partition_ordinal > 0 AND ic.index_id = i.index_id AND ic.object_id = t.object_id 
LEFT JOIN sys.columns AS c ON c.object_id = ic.object_id AND c.column_id = ic.column_id 
LEFT JOIN sys.partition_schemes ps ON i.data_space_id = ps.data_space_id 
LEFT JOIN sys.partition_functions pf ON pf.function_id = ps.function_id 
WHERE s.name='[your schema]' AND t.name = '[your table name]'

If the table has physical partition, you would see "HasPartition" as "yes" like the following.

Sql query result

Best practice for loading data into SQL Managed Instance

When you copy data into SQL Managed Instance, you might require different write behavior:

  • Append: My source data has only new records.
  • Upsert: My source data has both inserts and updates.
  • Overwrite: I want to reload the entire dimension table each time.
  • Write with custom logic: I need extra processing before the final insertion into the destination table.

See the respective sections for how to configure and best practices.

Append data

Appending data is the default behavior of the SQL Managed Instance sink connector. The service does a bulk insert to write to your table efficiently. You can configure the source and sink accordingly in the copy activity.

Upsert data

Copy activity now supports natively loading data into a database temporary table and then update the data in sink table if key exists and otherwise insert new data. To learn more about upsert settings in copy activities, see SQL Managed Instance as a sink.

Overwrite the entire table

You can configure the preCopyScript property in a copy activity sink. In this case, for each copy activity that runs, the service runs the script first. Then it runs the copy to insert the data. For example, to overwrite the entire table with the latest data, specify a script to first delete all the records before you bulk load the new data from the source.

Write data with custom logic

The steps to write data with custom logic are similar to those described in the Upsert data section. When you need to apply extra processing before the final insertion of source data into the destination table, you can load to a staging table then invoke stored procedure activity, or invoke a stored procedure in copy activity sink to apply data.

Invoke a stored procedure from a SQL sink

When you copy data into SQL Managed Instance, you also can configure and invoke a user-specified stored procedure with additional parameters on each batch of the source table. The stored procedure feature takes advantage of table-valued parameters.

You can use a stored procedure when built-in copy mechanisms don't serve the purpose. An example is when you want to apply extra processing before the final insertion of source data into the destination table. Some extra processing examples are when you want to merge columns, look up additional values, and insert into more than one table.

The following sample shows how to use a stored procedure to do an upsert into a table in the SQL Server database. Assume that the input data and the sink Marketing table each have three columns: ProfileID, State, and Category. Do the upsert based on the ProfileID column, and only apply it for a specific category called "ProductA".

  1. In your database, define the table type with the same name as sqlWriterTableType. The schema of the table type is the same as the schema returned by your input data.

    CREATE TYPE [dbo].[MarketingType] AS TABLE(
        [ProfileID] [varchar](256) NOT NULL,
        [State] [varchar](256) NOT NULL,
        [Category] [varchar](256) NOT NULL
    )
    
  2. In your database, define the stored procedure with the same name as sqlWriterStoredProcedureName. It handles input data from your specified source and merges into the output table. The parameter name of the table type in the stored procedure is the same as tableName defined in the dataset.

    CREATE PROCEDURE spOverwriteMarketing @Marketing [dbo].[MarketingType] READONLY, @category varchar(256)
    AS
    BEGIN
    MERGE [dbo].[Marketing] AS target
    USING @Marketing AS source
    ON (target.ProfileID = source.ProfileID and target.Category = @category)
    WHEN MATCHED THEN
        UPDATE SET State = source.State
    WHEN NOT MATCHED THEN
        INSERT (ProfileID, State, Category)
        VALUES (source.ProfileID, source.State, source.Category);
    END
    
  3. In your pipeline, define the SQL MI sink section in the copy activity as follows:

    "sink": {
        "type": "SqlMISink",
        "sqlWriterStoredProcedureName": "spOverwriteMarketing",
        "storedProcedureTableTypeParameterName": "Marketing",
        "sqlWriterTableType": "MarketingType",
        "storedProcedureParameters": {
            "category": {
                "value": "ProductA"
            }
        }
    }
    

Mapping data flow properties

When transforming data in mapping data flow, you can read and write to tables from Azure SQL Managed Instance. For more information, see the source transformation and sink transformation in mapping data flows.

Source transformation

The below table lists the properties supported by Azure SQL Managed Instance source. You can edit these properties in the Source options tab.

Name Description Required Allowed values Data flow script property
Table If you select Table as input, data flow fetches all the data from the table specified in the dataset. No - -
Query If you select Query as input, specify a SQL query to fetch data from source, which overrides any table you specify in dataset. Using queries is a great way to reduce rows for testing or lookups.

Order By clause is not supported, but you can set a full SELECT FROM statement. You can also use user-defined table functions. select * from udfGetData() is a UDF in SQL that returns a table that you can use in data flow.
Query example: Select * from MyTable where customerId > 1000 and customerId < 2000
No String query
Batch size Specify a batch size to chunk large data into reads. No Integer batchSize
Isolation Level Choose one of the following isolation levels:
- Read Committed
- Read Uncommitted (default)
- Repeatable Read
- Serializable
- None (ignore isolation level)
No READ_COMMITTED
READ_UNCOMMITTED
REPEATABLE_READ
SERIALIZABLE
NONE
isolationLevel
Enable incremental extract Use this option to tell ADF to only process rows that have changed since the last time that the pipeline executed. No - -
Incremental column When using the incremental extract feature, you must choose the date/time or numeric column that you wish to use as the watermark in your source table. No - -
Enable native change data capture(Preview) Use this option to tell ADF to only process delta data captured by SQL change data capture technology since the last time that the pipeline executed. With this option, the delta data including row insert, update and deletion will be loaded automatically without any incremental column required. You need to enable change data capture on Azure SQL MI before using this option in ADF. For more information about this option in ADF, see native change data capture. No - -
Start reading from beginning Setting this option with incremental extract will instruct ADF to read all rows on first execution of a pipeline with incremental extract turned on. No - -

Tip

The common table expression (CTE) in SQL is not supported in the mapping data flow Query mode, because the prerequisite of using this mode is that queries can be used in the SQL query FROM clause but CTEs cannot do this. To use CTEs, you need to create a stored procedure using the following query:

CREATE PROC CTESP @query nvarchar(max)
AS
BEGIN
EXECUTE sp_executesql @query;
END

Then use the Stored procedure mode in the source transformation of the mapping data flow and set the @query like example with CTE as (select 'test' as a) select * from CTE. Then you can use CTEs as expected.

Azure SQL Managed Instance source script example

When you use Azure SQL Managed Instance as source type, the associated data flow script is:

source(allowSchemaDrift: true,
    validateSchema: false,
    isolationLevel: 'READ_UNCOMMITTED',
    query: 'select * from MYTABLE',
    format: 'query') ~> SQLMISource

Sink transformation

The below table lists the properties supported by Azure SQL Managed Instance sink. You can edit these properties in the Sink options tab.

Name Description Required Allowed values Data flow script property
Update method Specify what operations are allowed on your database destination. The default is to only allow inserts.
To update, upsert, or delete rows, an Alter row transformation is required to tag rows for those actions.
Yes true or false deletable
insertable
updateable
upsertable
Key columns For updates, upserts and deletes, key column(s) must be set to determine which row to alter.
The column name that you pick as the key will be used as part of the subsequent update, upsert, delete. Therefore, you must pick a column that exists in the Sink mapping.
No Array keys
Skip writing key columns If you wish to not write the value to the key column, select "Skip writing key columns". No true or false skipKeyWrites
Table action Determines whether to recreate or remove all rows from the destination table prior to writing.
- None: No action will be done to the table.
- Recreate: The table will get dropped and recreated. Required if creating a new table dynamically.
- Truncate: All rows from the target table will get removed.
No true or false recreate
truncate
Batch size Specify how many rows are being written in each batch. Larger batch sizes improve compression and memory optimization, but risk out of memory exceptions when caching data. No Integer batchSize
Pre and Post SQL scripts Specify multi-line SQL scripts that will execute before (pre-processing) and after (post-processing) data is written to your Sink database. No String preSQLs
postSQLs

Tip

  1. It's recommended to break single batch scripts with multiple commands into multiple batches.
  2. Only Data Definition Language (DDL) and Data Manipulation Language (DML) statements that return a simple update count can be run as part of a batch. Learn more from Performing batch operations

Azure SQL Managed Instance sink script example

When you use Azure SQL Managed Instance as sink type, the associated data flow script is:

IncomingStream sink(allowSchemaDrift: true,
    validateSchema: false,
    deletable:false,
    insertable:true,
    updateable:true,
    upsertable:true,
    keys:['keyColumn'],
    format: 'table',
    skipDuplicateMapInputs: true,
    skipDuplicateMapOutputs: true) ~> SQLMISink

Lookup activity properties

To learn details about the properties, check Lookup activity.

GetMetadata activity properties

To learn details about the properties, check GetMetadata activity

Data type mapping for SQL Managed Instance

When data is copied to and from SQL Managed Instance using copy activity, the following mappings are used from SQL Managed Instance data types to interim data types used internally within the service. To learn how the copy activity maps from the source schema and data type to the sink, see Schema and data type mappings.

SQL Managed Instance data type Interim service data type
bigint Int64
binary Byte[]
bit Boolean
char String, Char[]
date DateTime
Datetime DateTime
datetime2 DateTime
Datetimeoffset DateTimeOffset
Decimal Decimal
FILESTREAM attribute (varbinary(max)) Byte[]
Float Double
image Byte[]
int Int32
money Decimal
nchar String, Char[]
ntext String, Char[]
numeric Decimal
nvarchar String, Char[]
real Single
rowversion Byte[]
smalldatetime DateTime
smallint Int16
smallmoney Decimal
sql_variant Object
text String, Char[]
time TimeSpan
timestamp Byte[]
tinyint Int16
uniqueidentifier Guid
varbinary Byte[]
varchar String, Char[]
xml String

Note

For data types that map to the Decimal interim type, currently Copy activity supports precision up to 28. If you have data that requires precision larger than 28, consider converting to a string in a SQL query.

Using Always Encrypted

When you copy data from/to SQL Managed Instance with Always Encrypted, follow below steps:

  1. Store the Column Master Key (CMK) in an Azure Key Vault. Learn more on how to configure Always Encrypted by using Azure Key Vault

  2. Make sure to great access to the key vault where the Column Master Key (CMK) is stored. Refer to this article for required permissions.

  3. Create linked service to connect to your SQL database and enable 'Always Encrypted' function by using either managed identity or service principal.

Note

SQL Managed Instance Always Encrypted supports below scenarios:

  1. Either source or sink data stores is using managed identity or service principal as key provider authentication type.
  2. Both source and sink data stores are using managed identity as key provider authentication type.
  3. Both source and sink data stores are using the same service principal as key provider authentication type.

Note

Currently, SQL Managed Instance Always Encrypted is only supported for source transformation in mapping data flows.

Native change data capture

Azure Data Factory can support native change data capture capabilities for SQL Server, Azure SQL DB and Azure SQL MI. The changed data including row insert, update and deletion in SQL stores can be automatically detected and extracted by ADF mapping dataflow. With the no code experience in mapping dataflow, users can easily achieve data replication scenario from SQL stores by appending a database as destination store. What is more, users can also compose any data transform logic in between to achieve incremental ETL scenario from SQL stores.

Make sure you keep the pipeline and activity name unchanged, so that the checkpoint can be recorded by ADF for you to get changed data from the last run automatically. If you change your pipeline name or activity name, the checkpoint will be reset, which leads you to start from beginning or get changes from now in the next run. If you do want to change the pipeline name or activity name but still keep the checkpoint to get changed data from the last run automatically, please use your own Checkpoint key in dataflow activity to achieve that.

When you debug the pipeline, this feature works the same. Be aware that the checkpoint will be reset when you refresh your browser during the debug run. After you are satisfied with the pipeline result from debug run, you can go ahead to publish and trigger the pipeline. At the moment when you first time trigger your published pipeline, it automatically restarts from the beginning or gets changes from now on.

In the monitoring section, you always have the chance to rerun a pipeline. When you are doing so, the changed data is always captured from the previous checkpoint of your selected pipeline run.

Example 1:

When you directly chain a source transform referenced to SQL CDC enabled dataset with a sink transform referenced to a database in a mapping dataflow, the changes happened on SQL source will be automatically applied to the target database, so that you will easily get data replication scenario between databases. You can use update method in sink transform to select whether you want to allow insert, allow update or allow delete on target database. The example script in mapping dataflow is as below.

source(output(
		id as integer,
		name as string
	),
	allowSchemaDrift: true,
	validateSchema: false,
	enableNativeCdc: true,
	netChanges: true,
	skipInitialLoad: false,
	isolationLevel: 'READ_UNCOMMITTED',
	format: 'table') ~> source1
source1 sink(allowSchemaDrift: true,
	validateSchema: false,
	deletable:true,
	insertable:true,
	updateable:true,
	upsertable:true,
	keys:['id'],
	format: 'table',
	skipDuplicateMapInputs: true,
	skipDuplicateMapOutputs: true,
	errorHandlingOption: 'stopOnFirstError') ~> sink1

Example 2:

If you want to enable ETL scenario instead of data replication between database via SQL CDC, you can use expressions in mapping dataflow including isInsert(1), isUpdate(1) and isDelete(1) to differentiate the rows with different operation types. The following is one of the example scripts for mapping dataflow on deriving one column with the value: 1 to indicate inserted rows, 2 to indicate updated rows and 3 to indicate deleted rows for downstream transforms to process the delta data.

source(output(
		id as integer,
		name as string
	),
	allowSchemaDrift: true,
	validateSchema: false,
	enableNativeCdc: true,
	netChanges: true,
	skipInitialLoad: false,
	isolationLevel: 'READ_UNCOMMITTED',
	format: 'table') ~> source1
source1 derive(operationType = iif(isInsert(1), 1, iif(isUpdate(1), 2, 3))) ~> derivedColumn1
derivedColumn1 sink(allowSchemaDrift: true,
	validateSchema: false,
	skipDuplicateMapInputs: true,
	skipDuplicateMapOutputs: true) ~> sink1

Known limitation:

Upgrade the Azure SQL Managed Instance version

To upgrade the Azure SQL Managed Instance version, in Edit linked service page, select Recommended under Version and configure the linked service by referring to Linked service properties for the recommended version.

The table below shows the differences between Azure SQL Managed Instance using the recommended and the legacy version.

Recommended version  Legacy version
Support TLS 1.3 via encrypt as strict. TLS 1.3 is not supported.

For a list of data stores supported as sources and sinks by the copy activity, see Supported data stores.