rolling_percentile() plugin

Applies to: ✅ Azure Data Explorer

Returns an estimate for the specified percentile of the ValueColumn population in a rolling (sliding) BinsPerWindow size window per BinSize.

The plugin is invoked with the evaluate operator.

Syntax

T | evaluate rolling_percentile(ValueColumn, Percentile, IndexColumn, BinSize, BinsPerWindow [, dim1, dim2, ...] )

Learn more about syntax conventions.

Parameters

Name Type Required Description
T string ✔️ The input tabular expression.
ValueColumn string ✔️ The name of the column used to calculate the percentiles.
Percentile int, long, or real ✔️ Scalar with the percentile to calculate.
IndexColumn string ✔️ The name of the column over which to run the rolling window.
BinSize int, long, real, datetime, or timespan ✔️ Scalar with size of the bins to apply over the IndexColumn.
BinsPerWindow int ✔️ The number of bins included in each window.
dim1, dim2, ... string A list of the dimensions columns to slice by.

Returns

Returns a table with a row per each bin (and combination of dimensions if specified) that has the rolling percentile of values in the window ending at the bin (inclusive). Output table schema is:

IndexColumn dim1 ... dim_n rolling_BinsPerWindow_percentile_ValueColumn_Pct

Examples

Rolling 3-day median value per day

The next query calculates a 3-day median value in daily granularity. Each row in the output represents the median value for the last 3 bins (days), including the bin itself.

let T = 
    range idx from 0 to 24 * 10 - 1 step 1
    | project Timestamp = datetime(2018-01-01) + 1h * idx, val=idx + 1
    | extend EvenOrOdd = iff(val % 2 == 0, "Even", "Odd");
T  
| evaluate rolling_percentile(val, 50, Timestamp, 1d, 3)

Output

Timestamp rolling_3_percentile_val_50
2018-01-01 00:00:00.0000000 12
2018-01-02 00:00:00.0000000 24
2018-01-03 00:00:00.0000000 36
2018-01-04 00:00:00.0000000 60
2018-01-05 00:00:00.0000000 84
2018-01-06 00:00:00.0000000 108
2018-01-07 00:00:00.0000000 132
2018-01-08 00:00:00.0000000 156
2018-01-09 00:00:00.0000000 180
2018-01-10 00:00:00.0000000 204

Rolling 3-day median value per day by dimension

Same example from above, but now also calculates the rolling window partitioned for each value of the dimension.

let T = 
    range idx from 0 to 24 * 10 - 1 step 1
    | project Timestamp = datetime(2018-01-01) + 1h * idx, val=idx + 1
    | extend EvenOrOdd = iff(val % 2 == 0, "Even", "Odd");
T  
| evaluate rolling_percentile(val, 50, Timestamp, 1d, 3, EvenOrOdd)

Output

Timestamp EvenOrOdd rolling_3_percentile_val_50
2018-01-01 00:00:00.0000000 Even 12
2018-01-02 00:00:00.0000000 Even 24
2018-01-03 00:00:00.0000000 Even 36
2018-01-04 00:00:00.0000000 Even 60
2018-01-05 00:00:00.0000000 Even 84
2018-01-06 00:00:00.0000000 Even 108
2018-01-07 00:00:00.0000000 Even 132
2018-01-08 00:00:00.0000000 Even 156
2018-01-09 00:00:00.0000000 Even 180
2018-01-10 00:00:00.0000000 Even 204
2018-01-01 00:00:00.0000000 Odd 11
2018-01-02 00:00:00.0000000 Odd 23
2018-01-03 00:00:00.0000000 Odd 35
2018-01-04 00:00:00.0000000 Odd 59
2018-01-05 00:00:00.0000000 Odd 83
2018-01-06 00:00:00.0000000 Odd 107
2018-01-07 00:00:00.0000000 Odd 131
2018-01-08 00:00:00.0000000 Odd 155
2018-01-09 00:00:00.0000000 Odd 179
2018-01-10 00:00:00.0000000 Odd 203